Abstract

Carbon nanotube (CNT)-reinforced composites exhibit a piezoresistive behavior that permits their use as sensors in novel structural health monitoring (SHM) applications, by measuring the electrical resistivity change of the CNT modified laminate. However, the presence of cracks in such composite materials may not only compromise their structural integrity, but may as well alter their capability to act as reliable piezoresistive sensors. In this paper, we conduct a numerical study aimed at quantifying how the presence of cracks in reinforced polymer composites does influence their electrical conductivity and, consequently, their sensor performance. To this end, the electromechanical constitutive properties of the composite are determined by a mixed micromechanics approach that allows characterizing both the elastic properties and the strain-induced alterations in the overall electrical conductivity of the CNT-reinforced composite. The strain response of the cracked composite domain is accurately determined by means of a dual Boundary Element (BE) approach. Electrical conductivity in the cracked composite follows from its computed strain state at each point in the domain. Subsequently, the resulting non-homogeneous electrical conductivity problem is solved using a finite differences scheme that also accounts for semipermeable crack-face electrical boundary conditions. Several parametric studies are conducted to illustrate the influence of various crack geometries in the piezoresistive behavior of CNT-reinforced composites at varying CNTs concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.