Abstract
In this paper a new method is applied in rotating cracked shafts to identify the depth and the location of a transverse surface crack. A local compliance matrix of different degrees of freedom is used to model the transverse crack in a shaft of circular cross section, based on available expressions of the stress intensity factors and the associated expressions for the strain energy release rates. It is known that when a crack exists in a structure, such as a beam, then the excitation in one-direction causes coupled vibrations in other directions. This property is used here to identify the crack. The shaft is modeled as a rotating Timoshenko beam including the gyroscopic effect and the axial vibration due to coupling. The method used here is based on the measurements of the axial vibration response due to different excitation frequencies and shaft revolutions. The figures presented are used to identify the crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.