Abstract
Oxidation induced crack healing of Al2O3 composites loaded with a MAX phase based repair filler (Ti2Al0.5Sn0.5C) was examined. The fracture strength of 20 vol% repair filler loaded composites containing artificial indent cracks recovered fully to the level of the virgin material upon isothermal annealing in air atmosphere after 48 h at 700°C and 0.5 h at 900°C. SEM‐EBSD analysis of crack microstructure indicates two different oxidation reaction regimes to govern the crack filling: near the surface SnO2, TiO2, and Al2O3 were formed whereas deeply inside the cracks Al2O3 and TiO2 and metallic Sn were detected. The presence of elemental Sn was attributed to partial oxidation of aluminum and titanium which lowered the local oxygen concentration below a threshold value required for Sn oxidation to SnO2. Thus, Ti2Al0.5Sn0.5C may represent an efficient repair filler system to trigger oxidation induced crack healing in ceramic composites at temperatures below 1000°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.