Abstract

Crack propagation in cement-based matrices carrying hybrid fiber reinforcement was studied using contoured double cantilever beam (CDCB) specimens. Influence of fiber type and combination was quantified using crack growth resistance curves. It was demonstrated that a hybrid combination of steel and polypropylene fibers enhances the resistance to both nucleation and growth of cracks, and that such fundamental fracture tests are very useful in developing high performance hybrid fiber composites. The influence of number of variables which would otherwise have remained obscured in normal tests for engineering properties become apparent in the fracture tests. The paper emphasizes the desired durability characteristics of these composites and discusses their current and future applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.