Abstract

Mode-I delamination crack growth in Ceramic Matrix Composite (CMC) materials is studied using experiments and associated numerical modeling. Double cantilever beam tests were conducted to measure delamination growth characteristics and the associated mode-I critical energy release rate. The tests revealed significant crack growth resistance (R-curve) behavior with the load carrying capacity increasing with the delamination growth. The experimentally observed load-displacement response could not be explained by linear elastic fracture mechanics or by a two-parameter triangular cohesive finite element models. The observed crack growth resistance behavior is explained by incorporating cohesive traction-separation relationship with a bilinear softening resulting in a long “tail”, which is interpreted and modeled as a superposition of two traction-separation relationships representing mechanisms associated with near crack-tip region and fiber-bridging in the crack-wake, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.