Abstract

A double cantilever beam technique in air equipped with ultrasound modulation was used to measure the crack velocity v in borate and silicate glasses. In all glasses v and the stress intensity KI followed the empirical correlation v ~ KIn. Indicated by its smallest KI at v = 1 µm s − 1, KI* = 0.27 MPa m0.5, the silicoborate glass containing 70 mol% B2O3 was found most susceptible to stress-corrosion enhanced crack growth. Contrarily, the sodium calcium magnesium silicate glass appeared least susceptible with KI* = 0.57 MPa m0.5. No clear correlation is evident between KI*, reflecting the stress-corrosion susceptibility, and the hydrolytic resistance for all glasses under study, but values of n obtained from the present study and taken from previous literature for 35 glasses tend to decrease with increasing network modifier ion fraction. Energy dissipation during stress-corrosion enhanced crack propagation is assumed to cause this trend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.