Abstract
Stress corrosion cracking (SCC) of core internals and/or recirculation pipes of austenite stainless steel (Type 316L) has been observed. When a SCC is detected at the reactor internals or pipes, it is necessary to calculate crack growth behavior of the crack for a certain operational period. The SCC initiates and grows near the welding zone because of high tensile residual stress by welding relative to the other contributing factors of material and environment. Therefore, the residual stress analysis due to welds of austenitic stainless piping is becoming important and has been already conducted by many researchers. In present work, the through-thickness residual stress distributions near multi-pass butt-welds of Type 316L pipes have been calculated by thermo-elastic-plastic analyses with the geometric and welding conditions changed and collected from literatures. Then crack growth simulations were performed using calculated and collected residual stress distributions. The effects of geometric and welding conditions on crack growth behavior were also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.