Abstract

We study the undulatory instability of a straight crack front generated by peeling a flexible elastic plate from a thin elastomeric adhesive film. We show that there is a threshold for the onset of the instability that is dependent on the ratio of two length-scales that arise naturally in the problem: the thickness of the film and an elastic length defined by the stiffness of the plate and that of the film. A linear stability analysis predicts that the wavelength of the instability scales linearly with the film thickness. Our results are qualitatively and quantitatively consistent with recent experiments, and show how crack fronts may lose stability due to a competition between bulk and surface effects in the presence of multiple length scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.