Abstract

Shale reservoirs are typically very tight, and crack are only a small part of the reservoir. The directional arrangement of cracks leads to the anisotropic characteristics of shale, and the type of fluid filled in cracks affects the shale reservoir evaluation and late development. Many rock physics theories and methods typically use second- and fourth-order crack density tensors to characterize the elastic anisotropy induced by cracks as well as the normal-to-tangential crack compliance ratio to distinguish between dry and saturated cracks. This study defines an anisotropic crack fluid indicator for vertical transversely isotropy (VTI) media with vertical symmetry axis which is the integration of the normal-to-tangential crack compliance ratio in three directions. A new dimensionless fourth-order tensor, including crack fluid type, azimuth distribution, and geometric shape, is constructed by substituting the normal and tangential compliance into the fourth-order crack density tensor, which can also be used to identify the type of crack fluid in the VTI media. Using the Callovo-Oxfordian shale experimental data, the variation of the elastic properties of dry and saturated shale samples with axial stress is analyzed. The results demonstrate that the anisotropic crack fluid indicator of water-bearing shale samples is less than that of the dry shale samples and that the dimensionless fourth-order tensor of water-bearing shale samples is nearly one order of magnitude greater than that of the dry shale samples. Therefore, the anisotropic crack fluid indicator and dimensionless fourth-order tensor can reflect the crack fluid type in shale samples and can be used for shale reservoir prediction and fluid identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.