Abstract

The crack fault is one of the most common faults in the rotor system, and researchers have paid close attention to its fault diagnosis. However, most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals. In this paper, a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function (RBF) network and Pattern recognition neural network (PRNN) is presented. Firstly, a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method, where the crack’s periodic opening and closing pattern and different degrees of crack depth are considered. Then, the dynamic response is obtained by the harmonic balance method. By adjusting the crack parameters, the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots. The analysis results show that the first critical speed, first subcritical speed, first critical speed amplitude, and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis. Based on this, the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input. Test results show that the proposed method has high fault diagnosis accuracy. This research proposes a crack detection method adequate for the hollow shaft rotor system, where the crack depth and position are both unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.