Abstract
To investigate the impact of initial cracks on the fatigue performance of single lug and yoke joints, fatigue testing was performed for defective welding joint models. The crack extension behaviors were investigated based on the theories of fracture mechanics using ANSYS-FRANC3D interactive technology, and the effects of the initial crack location, morphology pattern, and surface angle on fatigue performance were determined. The results showed a fatigue failure mode in which the crack extended along the welding line for single lug and yoke joints. The fatigue life was shorter when the initial crack was in the corner of the single lug plate. Moreover, the crack growth rates during the early stage of crack extension varied significantly with different initial crack morphology patterns. However, the crack growth rates during the later stages were similar to one another. The remaining fatigue life increased with the shape ratio for the same crack depth. Finally, the crack growth rate was the fastest, and the remaining fatigue life was the shortest when the initial crack surface angle was inclined toward the stress concentration area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.