Abstract

Nondestructive inspection of rolling contact and stress corrosion cracks is a critical important research area in both science and technology industry to evaluate the properties of a product. This paper proposes a novel system of circle-ferrite pulsed inductive thermography for cracks inspection. The new sensing structure consists of several promising characteristics. It significantly enhances the detectability of omnidirectional micro cracks, and provides larger detection area with non-geometry influence. In addition, unlike common inductor, the proposed structure imposes uniform toroidal electromagnetic thermal fields, so that both sensitivities of detection rate and the detectable area can be simultaneously improved. This overcomes the problem of in-homogenous heating, and increases the thermal contrast between directional defective and non-defective region. The theoretical derivation based on magnetic circuit principles has been developed for analysis and interpretation of the results. In addition, both simulation experiments and tests on artificial and nature cracks sample have been conducted to show the reliability and efficiency of the proposed system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.