Abstract

Fatigue cracks are typical damage of threaded steel rods under dynamic loads. This paper presents a study on ultrasonic guided waves-based, fatigue-crack detection of threaded rods. A threaded rod with given sizes is theoretically simplified as a cylindrical rod. The propagation characteristics of ultrasonic guided waves in the cylindrical rod are investigated by semi-analytical finite element method and the longitudinal L(0, 1) modal ultrasonic guided waves in low frequency band is proposed for damage detection of the rod. Numerical simulation on the propagation of the proposed ultrasonic guided waves in the threaded rod without damage shows that the thread causes echoes of the ultrasonic guided waves. A numerical study on the propagation of the proposed ultrasonic guided waves in the threaded rod with a crack on the intersection of the smooth segment and the threaded segment shows that both linear indexes ( and ARS) and nonlinear indexes ( and ) are able to detect the crack. A constant-amplitude tensile fatigue experiment was conducted on a specimen of the threaded rod to generate fatigue cracks in the specimen. After every 20,000 loading cycles, the specimen was tested by the proposed ultrasonic guided waves and evaluated by the linear indexes and nonlinear indexes. Experimental results show that both the linear and nonlinear indexes of the ultrasonic guided waves are able to identify the crack before it enters the rapid growth stage and the nonlinear indexes detect the crack easier than the linear indexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call