Abstract

Due to the fact that near a crack singularity, gradients of the solution are large and are also subject to abrupt changes, so that the solution cannot locally be accurately approximated by a piecewise polynomial function on a quasi-uniform mesh. Lifting wavelet finite element has good ability in modal analysis for singularity problems like a cracked pipe. The first three natural frequencies of the cracked pipe were solved with lifting wavelet finite element, and the database for crack diagnosis was obtained. The first three measured natural frequencies were employed as inputs and the intersection of the three frequencies contour lines predicted the normalized crack location and size. The experimental examples denote the method is of higher identification precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.