Abstract

Crack-face closure occurs when a shell or plate containing a through-the-thickness crack is subjected to a bending load, which leads to lower stress-intensity factors than those expected from non-closure assumption. This article presents a theoretical analysis of the effect of crack-face closure on the stress intensity factors of an axially and a circumferentially cracked cylindrical shell subjected to bending moment respectively. The presented analysis extends the shallow shell theories of Delale and Erdogan by incorporating the effect of crack-face closure. In keeping consistent with the shear deformation shell theory, crack-face closure is modeled by a line contact at the compressive edges of the crack face. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, i.e. along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. The results show that the distribution of the contact force along the crack is generally nonuniform. Furthermore, it is found that, similar to the case of spherical shells, crack closure may occur over the full length or only some segments of the crack in cylindrical shells, depending on the geometry of the shell and the nature (direction) of applied bending load. Comparisons of the stress intensity factor ratios between the closure solutions and the non-closure solutions reveal that the crack-face closure influences significantly the magnitude of the stress intensity factors and it tends to reduce the maximum stress intensity factor. The closure effect of crack face on the stress intensity factors is highest when the shell radius becomes very large for a given crack length and shell thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call