Abstract

Dynamic crack propagation in a strained, granular, and brittle material is investigated by modeling the material as a lattice network of elastic beams. By tuning the strain and the ratio of axial to bending stiffness of the beams, a crack propagates either straight, or it branches, or it bifurcates. The crack tip velocity is calculated approximately for cracks that propagate straight. In a bifurcated crack the number of broken beams follows a scaling law. The shape of the branches is found to be the same as in recent experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.