Abstract

In this paper, bulk notched sample was designed to introduce crack and shear band interaction in bulk metallic glasses (BMGs). Deformation morphologies on the polished surface demonstrate that crack in BMGs might be deflected or arrested by surrounding shear bands. Distinct fracture morphologies could be observed in the interaction-induced soften region, indicating a transition of the mechanism dominating crack propagation. A hyperelastic model was used to discuss crack and shear band interaction. It’s proved that crack propagation is dominated by local elastic properties rather than global linear elastic properties due to shear induced softening and multiple shear bands. Our study suggests that multiple shear bands with a proper spacing are helpful to inhibit catastrophic crack propagation and to improve the plasticity of bulk metallic glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.