Abstract

There is an increasing industrial demand for metal alloys with high wear resistance under severe operating conditions. Ni-based alloys, such as Inconel superalloys, are an excellent option for these applications; however, their use is limited by their high cost. Ni-based coatings deposited onto carbon steel substrates are being developed to achieve desired surface properties with reduced cost. Laser cladding deposition has emerged as an excellent method for processing Ni based coatings. In this work, microstructure, mechanical properties and local wear behaviour have been investigated in response to the addition of Cr3C2 ceramic particles into an Inconel 625 alloy deposited onto a ferritic steel substrate by laser cladding. Using this deposition technique, a homogeneous distribution of Cr3C2 particles was observed in the coating microstructure. The addition of ceramic particles to the starting powder resulted in the formation of hard precipitates in the coating microstructure. The partial dissolution of Cr3C2 particles during the laser cladding process increased the hardness of the Inconel 625 matrix. Depth sensing indentation and scratch tests were performed to study the local wear behaviour and scratch resistance of the cermet matrix compared with the conventional Inconel 625 alloy. Finally, the effect of Cr3C2 on mechanical properties was correlated with the observed microstructure modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call