Abstract

Immunoglobulin M (IgM) antibodies to the variant surface glycoproteins (VSG) of African trypanosomes are the first and predominant class of anti-trypanosomal antibodies in the infected host. They are a major factor in controlling waves of parasitemia, but not in long-term survival. The macrophage receptor(s) that enables phagocytosis of IgM anti-VSG-coated African trypanosomes is unknown. We assessed whether complement receptor CR3 (CD11b/CD18) might be involved in mediating phagocytosis of Trypanosoma congolense. We show that murine complement C3 fragments are deposited onto T. congolense when the trypanosomes are incubated with IgM anti-VSG and fresh mouse serum. In the presence of fresh mouse serum, there is significantly and markedly less phagocytosis of IgM-opsonized T. congolense by CD11b-deficient macrophages compared to phagocytosis by wild-type macrophages (78% fewer T. congolense are ingested per macrophage). Significantly less tumor necrosis factor (TNF)-α (38% less), but significantly more nitric oxide (NO) (63% more) are released by CD11b-deficient macrophages that have engulfed trypanosomes than by equally treated wild-type macrophages. We conclude that CR3 is the major, but not the only, receptor involved in IgM anti-VSG-mediated phagocytosis of T. congolense by macrophages. We further conclude that IgM anti-VSG-mediated phagocytosis of T. congolense enhances synthesis of disease-producing TNF-α and inhibits synthesis of parasite-controlling NO. We suggest that signaling of inhibition of NO synthesis is mediated via CR3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call