Abstract

In this work, we investigated the structural evolution, electronic and magnetic properties of Cr2 Gen - clusters for n = 15-20 by using density functional theory (DFT) calculations. Low-energy structures for these clusters were fully searched through a self-developed genetic algorithm code combined with DFT calculations. The calculations show that all the two Cr atoms prefer to stay together to form a strong CrCr bond, which-except for size 20-is shorter than the nearest neighbor distance in Cr bulk. Sizes 15 and 16 adopt a wheel-like structure as the structural motif with the extra Ge atoms capped on the top, while larger sizes (n = 17-20) prefer fullerene-like Cr2 @Ge12 motifs. From the results of the average binding energies of Cr2 Gen - , one can conclude that it is easier to form larger size clusters. In these lowest-lying isomers except for size 16, the two Cr atoms contribute opposite magnetic moments for the total magnetic moments of 1 μB , showing an antiferromagnetic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call