Abstract

The bioremediation of Cr(VI)-contaminated soil is a promising strategy; however, the performance of Cr(VI)-reducing bacteria is limited by the toxicity of Cr(VI). In this study, two novel Cr(VI)-reducing bacteria were isolated from a Cr salt plant and identified as Agrobacterium sp. and Lysinibacillus sp. The Cr(VI) reduction conditions of the two strains were optimized. At a Cr(VI) concentration of 500mg/L, Agrobacterium sp. Cr-1 reduced Cr(VI) with a removal rate of 96.91%, while that for Lysinibacillus sp. Cr-2 was 92.82%. First-order reaction kinetic equations simulated the positive relationship between time and Cr(VI) concentration during Cr(VI) reduction in these two strains. Agrobacterium sp. Cr-1 was further studied, and the effects of different cell components on Cr(VI) reduction were detected. The extracellular extracts of Agrobacterium sp. Cr-1 played a major role in Cr(VI) reduction, followed by intracellular extracts and cell membranes. The scanning electron microscope-energy dispersive spectrometer (SEM-EDS) images show that the precipitation was Cr. The high Cr(VI) reducing ability of Agrobacterium sp. Cr-1 suggests that this strain is promising for the remediation of Cr(VI)-contaminated sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call