Abstract

The aim of this study was to investigate the mechanism of Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa using batch experiments and analysis techniques. Data showed that resting cells of this strain (3.2g/L dry weight) reduced 10mg/L of Cr(VI) by 86% in Tris-HCl buffer solution under optimized conditions of 5g/L of sodium acetate as an electron donor, pH of 7.0 and temperature of 37°C within 24h. Cr(VI) was largely converted to nontoxic Cr(III), and both soluble crude cell-free extracts and membrane-associated fractions were responsible for Cr(VI) reduction. While remnant Cr(VI) existed only in the supernatant, the content of resultant Cr(III) in supernatant, on cell surface and inside cells was 2.62, 1.06, and 5.07mg/L, respectively, which was an indicative of extracellular and intracellular reduction of chromate. Scanning electron microscopy analysis combined with energy dispersive X-ray spectroscopy revealed the adsorption of chromium on the bacterial surface. Interaction between Cr(III) and cell surface functional groups immobilized Cr(III) as indicated by Fourier transform infrared analyses and X-ray photoelectron spectroscopy. Transmission electron microscopy revealed Cr(III) precipitates in bacterial interior suggesting that Cr(II) could also be intracellularly accumulated. Thus, it can be concluded that interior and exterior surfaces of resting P. aeruginosa cells were sites for reduction and immobilization of Cr(VI) and Cr(III), respectively. This is further insight into the underlying mechanisms of microbial chromate reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call