Abstract

We report systematic study of structural, phonon and optical properties of Cr-doped ZnO nanoparticles. These particles are synthesized through simple sol–gel technique. Structural studies carried out by X-ray diffraction method, confirm that the prepared particles are in hexagonal wurtzite structure and lattice parameters change considerably while increasing the doping. Raman and Fourier transform infrared spectral studies show that the intensity of the phonon modes decreased and also blue shift due to ion doping, respectively. Apart from this, transmission electron microscopic studies show reduction in particle size where the particle diameters reduced from 36 to 11 nm. Optical absorption spectral measurements show a blue shift in the band-gap and increment in excitonic oscillator strength. Photoluminescence studies show doping altered the near-band edge emission but there is no change in the other emission bands which is due to oxygen vacancy, surface defects and surface dangling bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call