Abstract

Although molybdenum disulfide (MoS2) has garnered significant interest as a potential catalyst for the oxygen evolution reaction (OER), its poor intrinsic activity and few marginal active spots restrict its electrocatalytic activity. Herein, we successfully constructed a catalyst via a simple hydrothermal method by forming a heterostructure of MoS2 with Cr-doped nickel-iron hydroxide (NiFe LDH) to synthesize a MoS2/NiFeCr LDH catalyst to significantly improve the OER catalytic performance. MoS2 plays a crucial function as an electron transport channel in the MoS2/NiFeCr LDH heterostructure, which increases the electron transport rate. Furthermore, a larger active surface area for NiFeCr LDH is provided by the ultrathin layered structure of MoS2, increasing the number of active sites and encouraging the OER. On the other hand, the introduction of Cr element increased the density of the catalytic center and provided additional Cr-OH active sites, which accelerated the oxygen decomposition reaction. These two factors act synergistically to improve the intrinsic structure of MoS2, increase the number of reactive sites, and dramatically enhance the OER catalytic performance. Excellent OER activity is demonstrated by the MoS2/NiFeCr LDH catalyst, which only needs an overpotential of 224 mV to obtain a current density of 10 mA cm-2 and a Tafel slope of 61 mV dec-1. The catalyst also demonstrated outstanding stability, with its activity practically holding steady after 48 h of testing. This work offers novel ideas for enhancing and designing MoS2-based OER catalysts, and it provides a crucial reference for research in the field of clean energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.