Abstract

Ultrasensitive and selective detection of methyl benzenes was achieved for Co3O4 nanorods through Cr-doping. Pure and 1.17–1.89at% Cr-doped Co3O4 nanorods were synthesized by a solvothermal reaction, followed by calcination at 400°C for 2h. The gas-sensing properties of the nanorods were tested to methyl benzene (toluene and xylene) and compared with interfering gases (benzene, ethanol, ammonia, CO and NO2) at various concentrations (0.25–5ppm) and temperatures (250–350°C). The results demonstrated that Cr-doping significantly enhanced the response to methyl benzenes while suppressing cross-responses to interfering gases, resulting in selectivity for methyl benzene. The ultraselectivity to methyl benzene in the Cr-doped Co3O4 nanorods was attributed to catalytic activity and the abundant adsorbed oxygen of the Cr oxides and Co3O4 for the partial oxidation of methyl benzenes to more active chemical species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.