Abstract

Light aromatics (benzene, toluene, and xylene, collectively known as BTX) are essential commodity chemicals in the petrochemical industry. The present study examines the aromatization of bioethanol with Cr- and Ga-modified ZSM-5. Both Cr and Ga were incorporated by the ion-exchange method. Cr-modified ZSM-5 outperforms the Ga-modified ZSM-5 and H-ZSM-5 catalysts. Cr-H-ZSM-5 almost doubled the carbon yield of aromatics compared to H-ZSM-5 at an optimum reaction temperature of 450 °C. Cr-H-ZSM-5 produced aromatics with a yield of ~40 %. The effect of dilution in feed on BTX production is also studied. Cr-H-ZSM-5 was found to be more active than H-ZSM-5. Complete ethanol conversion was obtained with both pure and dilute bioethanol. The Bronsted-Lewis acid (BLA) pair formed after metal incorporation is responsible for dehydrogenation followed by aromatization, leading to increased aromatic production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call