Abstract
Mesh simplification and mesh compression are important processes in computer graphics and scientific computing, as such contexts allow for a mesh which takes up less memory than the original mesh. Current simplification and compression algorithms do not take advantage of both the central processing unit (CPU) and the graphics processing unit (GPU). We propose three simplification algorithms, one of which runs on the CPU and two of which run on the GPU. We combine these algorithms into two CPU-GPU algorithms for mesh simplification. Our CPU-GPU algorithms are the naive marking algorithm and the inverse reduction algorithm. Experimental results show that when the algorithms take advantage of both the CPU and the GPU, there is a decrease in running time for simplification compared to performing all of the computation on the CPU. The marking algorithm provides higher simplification rates than the inverse reduction algorithm, whereas the inverse reduction algorithm has a lower running time than the marking algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.