Abstract

SUMMARYGadget is a simulation application for N‐body and smoothed particle hydrodynamics problems in cosmology, and it is widely applied in solving series of cosmological problems. N‐body focuses on the motion of the interaction of N particles, and smoothed particle hydrodynamics is a fluid simulation algorithm that studies the movement of fluid through particle simulation. Most scholars focus their attention on accelerating Gadget on multi‐core CPU or graphics processing units (GPUs) platforms. However, these research activities failed to achieve CPU–GPU hybrid computing, which resulted in tremendous waste of CPU computing resources.In this paper, we propose a CPU–GPU hybrid parallel strategy to accelerate Gadget‐2, a massively parallel structure formation code for cosmological simulations. This strategy uses CPU and GPU to process the calculation of short‐range force. To ensure CPU and GPU workload balance, a dynamic task allocation scheme is proposed according to the computational performance difference between the CPU and GPU.Experimental results showed that our CPU–GPU hybrid parallel strategy achieved an overall speedup factor of 18.6 and a partial speedup factor for short‐range force calculation of 28.35 compared with a single‐core CPU implementation for particles in million‐size magnitudes. Moreover, compared with a GPU platform that contained 12 CPU cores and one GPU, our hybrid parallel strategy obtained overall speedup and partial speedup factors of 6% and 20%, respectively. Furthermore, the scalability of the hybrid strategy is very fine – its performance will be enhanced when the problem scale is increasing. However, this strategy also has its limitation that the performance enhancement will be decreasing if the ratio(the number of CPU cores divides that of the GPU cards) reduces. Finally, in our hybrid strategy, the CPU coefficient of utilization improved by 17.14% or better. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.