Abstract

• Proposed explicit DDA in two-dimensional case. • Verified the accuracy of explicit DDA by comparing with analytical solution. • Simulated failure process of a mixed block slope in an experiment. • Reproduced the failure process of the Donghekou landslide. • Accelerated explicit DDA based on OpenMP and showed computing efficiency. An explicit discontinuous deformation analysis (DDA) that uses an explicit time integration procedure and an explicit calculation of interaction forces between blocks is proposed to overcome the limitations of conventional implicit DDA in simulating large-scale problems. The advantages of the explicit DDA are that (1) the global equilibrium equations are unnecessary to be assembled and the solving for unknowns of every block can be performed independently and conveniently, thereby reducing the computational effort and memory requirement; (2) the open-close iteration process is avoided because the interaction forces between blocks are calculated explicitly according to the initial information at the start of the current time step. The efficient parallel computing is very appropriate for the explicit DDA. To further improve its computational efficiency, the explicit DDA is paralleled based on OpenMP. The accuracy of the explicit DDA is verified through several numerical examples with analytical solutions, experimental data or field observation. Further, the computational efficiency is demonstrated by a series of models and the parallel speedup factor on 6 OpenMP threads is approximately 4.2. Conclusively, the explicit DDA is promising for analyzing blocky systems in large scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call