Abstract

Discrete spacetime symmetries of parity P or reflection R, and time-reversal T, act naively as $\mathbb{Z}_2$-involutions in the passive transformation on the spacetime coordinates; but together with a charge conjugation C, the total C-P-R-T symmetries have enriched active transformations on fields in representations of the spacetime-internal symmetry groups of quantum field theories (QFTs). In this work, we derive that these symmetries can be further fractionalized, especially in the presence of the fermion parity $(-1)^{\rm F}$. We elaborate on examples including relativistic Lorentz invariant QFTs (e.g., spin-1/2 Dirac or Majorana spinor fermion theories) and nonrelativistic quantum many-body systems (involving Majorana zero modes), and comment on applications to spin-1 Maxwell electromagnetism (QED) or interacting Yang-Mills (QCD) gauge theories. We discover various C-P-R-T-$(-1)^{\rm F}$ group structures, e.g., Dirac spinor is in a projective representation of $\mathbb{Z}_2^{\rm C}\times \mathbb{Z}_2^{\rm P} \times \mathbb{Z}_2^{\rm T}$ but in an (anti)linear representation of an order-16 nonabelian finite group, as the central product between an order-8 dihedral (generated by C and P) or quaternion group and an order-4 group generated by T with T$^2=(-1)^{\rm F}$. The general theme may be coined as C-P-T or C-R-T fractionalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call