Abstract
The purpose of this study was to assess whether the artifacts presented by precordial compressions during cardiopulmonary resuscitation could be removed from the human electrocardiogram (ECG) using a filtering approach. This would allow analysis and defibrillator charging during ongoing precordial compressions yielding a very important clinical improvement to the treatment of cardiac arrest patients. In this investigation we started with noise-free human ECGs with ventricular fibrillation (VF) and ventricular tachycardia (VT) records. To simulate a realistic resuscitation situation, we added a weighted artifact signal to the human ECG, where the weight factor was chosen to provide the desired signal-to-noise ratio (SNR) level. As artifact signals we used ECGs recorded from animals in asystole during precordial compressions at rates 60, 90, and 120 compressions/min. The compression depth and the thorax impedance was also recorded. In a real-life situation such reference signals are available and, using an adaptive multichannel Wiener filter, we construct an estimate of the artifact signal, which subsequently can be subtracted from the noisy human ECG signal. The success of the proposed method is demonstrated through graphic examples, SNR, and rhythm classification evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.