Abstract
In order to effectively improve the accuracy of Consumer Price Index (CPI) prediction so as to more truly reflect the overall level of the country’s macroeconomic situation, a CPI big data prediction method based on wavelet twin support vector machine (SVM) is proposed. First, the historical CPI data are decomposed into high-frequency part and low-frequency part by wavelet transform. Then a more advanced twin SVM is used to build a prediction model to obtain two kinds of prediction results. Finally, the wavelet reconstruction method is used to fuse the two kinds of prediction results to obtain the final CPI prediction results. The wavelet twin SVM model is used to fit and predict CPI index. Experimental results show that compared with the similar prediction methods, the proposed prediction method has higher fitting accuracy and smaller root mean square error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.