Abstract

Little is known about the role of specific delta GST genes in the detoxification of lambda-cyhalothrin in the global quarantine fruit pest codling moth, Cydia pomonella (L.). Real-time quantitative PCR shows that CpGSTd3 was ubiquitously expressed at all developmental stages and is most abundant in the larval stage and lowest in the egg stage; the mRNA level of CpGSTd3 is higher in the midgut and Malpighian tubules of fourth-instar larvae and abdomens of adults than in other tissues. Exposure of fourth-instar larvae to an LD10 dosage of lambda-cyhalothrin significantly induced the transcript of CpGSTd3 at 3 h, but the mRNA level was down-regulated after 12 h of treatment. Recombinant CpGSTd3 expressed in Escherichia coli was able to catalyze the conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) and with an IC50 value of 0.65 mM for lambda-cyhalothrin. Metabolism assays indicate that recombinant CpGSTd3 could metabolize lambda-cyhalothrin. These results suggest that CpGSTd3 is probably a lambda-cyhalothrin metabolizing GST in C. pomonella.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.