Abstract

Synthetic phosphorothiolate-modified CpG-oligodeoxynucleotides (CpG-ODNs) are potent immune stimuli. Toll-like receptor (TLR) 9 and TLR21 are their cellular receptors in different species. The structural requirements for CpG-ODN to strongly activate TLR9 have been relatively well studied, but studies on TLR21 are in their infancy. Therefore, in this study, we investigated the interaction between CpG-ODNs and TLR21s from groupers (Epinephelus spp.), which are economically important fish species. We cloned the cDNA of giant grouper (E. lanceolatus) TLR21, and compared its sequence with orange-spotted grouper (E. coioides) TLR21A and TLR21B. These three receptors were activated by CpG-ODNs containing the GTCGTT motif but not by those containing the GACGTT motif. We developed two CpG-ODNs that contained 19 phosphorothiolated deoxynucleotides with one or two GTCGTT motifs. These CpG-ODNs had better activity on grouper TLR21s than currently developed CpG-ODNs, and produced similar immune stimulatory profiles when applied to cells isolated from orange-spotted grouper. The developed CpG-ODNs also effectively activated both human and mouse TLR9-mediated NF-κB activation and cytokine productions. These findings suggest that the GTCGTT motif is required for CpG-ODNs to activate grouper TLR21s, and that the CpG-ODNs that were developed for grouper TLR21s contain structures that effectively activate human and mouse TLR9s.

Highlights

  • Synthetic phosphorothiolate-modified CpG-oligodeoxynucleotides (CpG-ODNs) are potent immune stimuli

  • The developed CpG-ODNs effectively activated both human and mouse TLR9-mediated nuclear factor (NF)-κB activation and cytokine productions. These findings suggest that the GTCGTT motif is required for CpG-ODNs to activate grouper TLR21s, and that the CpG-ODNs that were developed for grouper TLR21s contain structures that effectively activate human and mouse TLR9s

  • The main difference between their encoded protein sequences is the absence of four amino acid residues at the C-terminal end of osgTLR21B (Supplementary Fig. 1)

Read more

Summary

Introduction

Synthetic phosphorothiolate-modified CpG-oligodeoxynucleotides (CpG-ODNs) are potent immune stimuli. We cloned the cDNA of giant grouper (E. lanceolatus) TLR21, and compared its sequence with orange-spotted grouper (E. coioides) TLR21A and TLR21B These three receptors were activated by CpG-ODNs containing the GTCGTT motif but not by those containing the GACGTT motif. We developed two CpG-ODNs that contained 19 phosphorothiolated deoxynucleotides with one or two GTCGTT motifs These CpG-ODNs had better activity on grouper TLR21s than currently developed CpG-ODNs, and produced similar immune stimulatory profiles when applied to cells isolated from orange-spotted grouper. Most of our current knowledge about the structural–functional relationships and species-specific activities of CpG-ODNs is generated by studying their interaction with TLR9, but much less is derived from the study with TLR21 This is because most of the earlier work on CpG-ODNs was performed using human and mouse cells, which contain only TLR9. The sequence that is required to strongly activate TLR21 has not been investigated and it remains unclear whether a CpG-ODN can simultaneously have strong activity toward both TLR9 and TLR21

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.