Abstract

BackgroundThe investigation of molecular alterations associated with the conservation and variation of DNA methylation in eukaryotes is gaining interest in the biomedical research community. Among the different determinants of methylation stability, the DNA composition of the CpG surrounding regions has been shown to have a crucial role in the maintenance and establishment of methylation statuses. This aspect has been previously characterized in a quantitative manner by inspecting the nucleotidic composition in the region. Research in this field still lacks a qualitative perspective, linked to the identification of certain sequences (or DNA motifs) related to particular DNA methylation phenomena.ResultsHere we present a novel computational strategy based on short DNA motif discovery in order to characterize sequence patterns related to aberrant CpG methylation events. We provide our framework as a user-friendly, shiny-based application, CpGmotifs, to easily retrieve and characterize DNA patterns related to CpG methylation in the human genome. Our tool supports the functional interpretation of deregulated methylation events by predicting transcription factors binding sites (TFBS) encompassing the identified motifs.ConclusionsCpGmotifs is an open source software. Its source code is available on GitHub https://github.com/Greco-Lab/CpGmotifs and a ready-to-use docker image is provided on DockerHub at https://hub.docker.com/r/grecolab/cpgmotifs.

Highlights

  • ResultsWe present a novel computational strategy based on short DNA motif discovery in order to characterize sequence patterns related to aberrant CpG methylation events

  • The investigation of molecular alterations associated with the conservation and variation of DNA methylation in eukaryotes is gaining interest in the biomedical research community

  • Regulatory annotation DNA motifs are primarily used to search for affinities between binding sites of molecules interacting with the DNA, including transcription factors (TFs)

Read more

Summary

Results

We present a novel computational strategy based on short DNA motif discovery in order to characterize sequence patterns related to aberrant CpG methylation events. We provide our framework as a user-friendly, shiny-based application, CpGmotifs, to retrieve and characterize DNA patterns related to CpG methylation in the human genome. Our tool supports the functional interpretation of deregulated methylation events by predicting transcription factors binding sites (TFBS) encompassing the identified motifs

Conclusions
Background
Results and discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call