Abstract

The macrophage capability to recognize bacterial DNA is mimicked by oligodeoxynucleotides containing unmethylated CG dinucleotides ('CpG' motifs) in specific sequence contexts (CpG ODN). CpG ODN stimulates NF-kappaB activation in murine macrophages. In light of the pivotal role played by NF-kappaB in osteoclast differentiation, we examined the ability of CpG ODN to modulate osteoclastogenesis. CpG ODN alone induced TRAP-positive cells in bone marrow macrophage (BMM) cultures, but not multinucleation or calcitonin receptor expression. CpG ODN inhibited RANKL-induced osteoclastogenesis when present from the beginning of BMM culture, but strongly increased RANKL-induced osteoclastogenesis in RANKL-pretreated BMMs. CpG ODN enhanced the expression of interleukin 1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha). Antibodies to TNF-alpha and the TNF type 1 receptor, but not the addition of IL-1 receptor antagonist, blocked CpG ODN-induced osteoclastogenesis in RANKL-pretreated cultures. On the other hand, CpG ODN reduced expression of the M-CSF receptor, which is critical during the initiation of osteoclast differentiation. These results suggest that CpG ODN, via the induction of TNF-alpha, support osteoclastogenesis in cells that are committed to the osteoclast differentiation pathway but, due to down-modulation of M-CSF receptor, inhibit early steps of osteoclast differentiation. Thus, CpG ODN represents a potential therapeutic tool for treating bone diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.