Abstract

Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes.

Highlights

  • Adjuvants can be broadly categorized in two major functional groups based on whether their immune activity is dependent or not on toll-like receptor (TLR) signaling

  • Since CpG-ODN, a synthetic TLR9 agonist, is another adjuvant approved for use in humans [4], we extended our work and studied the effect of sensitization to OVA with CpG-ODN, type C, adsorbed to Alum

  • We have previously shown that sensitization to OVA performed with TLR4 agonist adsorbed to Alum prevented the development of asthma-like responses without shifting the lung inflammation toward a Th1 pattern [7]

Read more

Summary

Introduction

Adjuvants (from Latin, adjuvare: to help) can be broadly categorized in two major functional groups based on whether their immune activity is dependent or not on toll-like receptor (TLR) signaling. Aluminum-containing adjuvants, usually referred as Alum, are TLR-independent adjuvants used in numerous vaccine formulations such as the triple vaccine (diphtheria, pertussis, and tetanus), human papillomavirus, and hepatitis vaccines [1, 2]. Alum has been licensed for human vaccines for almost 100 years, studies on the mechanisms of action and signaling underlying its activity are still in progress [1, 3, 4]. Alum-Based CpG Formulation ovalbumin (OVA) asthma model because sensitization with this adjuvant provokes strong antigen-induced T helper type-2 (Th2) responses, characterized by infiltration of effector/inflammatory CD4+ T cells and eosinophils into the lung and elevated serum IgE levels [5]. Some TLR agonists such as monophosphoryl lipid A (MPLA), a TRIFbiased TLR4 agonist, or TLR9 agonists, which are composed of oligodeoxynucleotides (ODN) containing CpG motifs (CpG), have been approved for use in humans [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.