Abstract

One of the mechanisms proposed to explain how CpG methylation effects gene repression invokes a DNA methylation-determined chromatin structure. Previous work implied that this DNA modification does not influence nucleosome formation in vitro, thus current models propose that certain non-histone proteins or a preferential affinity by linker histones for methylated DNA may mediate changes in chromatin structure. We have reinvestigated whether CpG methylation alters the chromatin structure of reconstitutes comprising only core histones and DNA. We find that DNA methylation prevents the histone octamer from interacting with an otherwise high affinity positioning sequence in the promoter region of the chicken adult β-globin gene. This exclusion is attributed to methylation-determined changes in DNA structure within a triplet of CpG dinucleotides. In the affected nucleosome, this sequence motif is located 1.5 helical turns from the dyad axis and is oriented towards the histone core. These findings establish that DNA methylation does have the capacity to modulate chromatin structure directly, at its most fundamental level. Furthermore, our observations strongly suggest that a very limited number of nucleotides can make a decisive contribution to the translational positioning of nucleosomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.