Abstract

Precisely defining and mapping all cytosine (C) positions and their clusters, known as CpG islands (CGIs), as well as their methylation status, are pivotal for genome-wide epigenetic studies, especially when population-centric reference genomes are ready for timely application. Here, we first align the two high-quality reference genomes, T2T-YAO and T2T-CHM13, from different ethnic backgrounds in a base-by-base fashion and compute their genome-wide density-defined and position-defined CGIs. Second, by mapping some representative genome-wide methylation data from selected organs onto the two genomes, we find that there are about 4.7%-5.8% sequence divergency of variable categories depending on quality cutoffs. Genes among the divergent sequences are mostly associated with neurological functions. Moreover, CGIs associated with the divergent sequences are significantly different with respect to CpG density and observed CpG/expected CpG (O/E) ratio between the two genomes. Finally, we find that the T2T-YAO genome not only has a greater CpG coverage than that of the T2T-CHM13 genome when whole-genome bisulfite sequencing (WGBS) data from the European and American populations are mapped to each reference, but also shows more hyper-methylated CpG sites as compared to the T2T-CHM13 genome. Our study suggests that future genome-wide epigenetic studies of the Chinese populations rely on both acquisition of high-quality methylation data and subsequent precision CGI mapping based on the Chinese T2T reference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.