Abstract

We previously reported a simple technique that combines microarray data from clinical bladder cancer (BC) specimens with those from a BC cell line (BOY) treated with a pharmacologic demethylating agent (5-aza-dC). We focused on the human four-and-a-half LIM domains 1 (FHL1) gene which was selected on the basis of previous microarray data analysis. Because LIM domains provide protein-protein binding interfaces, FHL genes play an important role in cellular events, such as focal adhesion and differentiation, by interacting with the target protein as either a repressor or activator. We hypothesized that inactivation of the FHL1 gene through CpG methylation contributes to cell viability including migration and invasion activity of human BC. After 5-aza-dC treatment, the expression levels of FHL1 mRNA transcript markedly increased in all cell lines tested, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR). The methylation index of FHL1 in our samples was significantly higher in 70 BC specimens than in 10 normal bladder epithelium (NBE) specimens (63.9+/-25.5 and 0.3+/-0.2, respectively; p=0.0066). Conversely, FHL1 mRNA expression was significantly lower in the BC specimens than in the NBE ones (0.331+/-0.12 and 2.498+/-0.61, respectively; p=0.0011). In addition, significant inhibitions of wound healing (45.78+/-6.2, and 100+/-0, respectively; p=0.009) and of cell invasion (18.5+/-2.3 and 95.2+/-2.4, respectively; p=0.02) were observed in stable FHL1-transfected cells than in the control BC cells. In conclusion, we found that the mechanism of FHL1 down-regulation in BC is through CpG hypermethylation of the promoter region. FHL1 gene inactivation by CpG hypermethylation may thus contribute to migration and invasion activity of BC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.