Abstract

Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome.

Highlights

  • DNA methylation is the prime form of epigenetic modifications of the eukaryotic genome

  • In self-replicating viruses the observed/expected CpG ratio is variable: it can take very low values, or high values

  • Dependoviruses are more uniform regarding CpG content: in each case the observed/expected CpG ratio (oCpGr) values stay above 60% with the exception of MDPV and can reach more than 100%

Read more

Summary

Introduction

DNA methylation is the prime form of epigenetic modifications of the eukaryotic genome. In vertebrate cells almost exclusively the 5th carbon atom of cytosine is methylated within CpG dinucleotides. Methylation has a significant impact on chromatin structure modulation, genomic imprinting and X chromosome inactivation. It can inhibit transcription by preventing the binding of transcription factors or by recruiting methyl-binding proteins and histone deacetylases leading to the formation of condensed chromatin structure [1]. In mammals approximately 60-90% of CpGs comprise methylated cytosine bases [2]. DNA methyltransferases (DNMTs) are responsible for the conversion of cytosines to 5-methylcytosines. The mechanism of site specific CpG methylation and regulation of DNMTs to develop specific patterns are presently not well understood [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call