Abstract
CpG-binding protein (CXXC finger protein 1 (CFP1)) binds to DNA containing unmethylated CpG motifs and is required for mammalian embryogenesis, normal cytosine methylation, and cellular differentiation. Studies were performed to identify proteins that interact with CFP1 to gain insight into the molecular function of this protein. Immunoprecipitation and mass spectrometry reveal that human CFP1 associates with a approximately 450-kDa complex that contains the mammalian homologues of six of the seven components of the Set1/COMPASS complex, the sole histone H3-Lys4 methyltransferase in yeast. In vitro assays demonstrate that the human Set1/CFP1 complex is a histone methyltransferase that produces mono-, di-, and trimethylated histone H3 at Lys4. Confocal microscopy reveals that CFP1 and Set1 co-localize to nuclear speckles associated with euchromatin. A Set1 complex of reduced mass persists in murine embryonic stem cells lacking CFP1. These cells carry elevated levels of methylated histone H3-Lys4 and reduced levels of methylated histone H3-Lys9. Together with the previous finding of reduced levels of cytosine methylation, these data indicate that cells lacking CFP1 contain reduced levels of heterochromatin. Furthermore, ES cells lacking CFP1 exhibit a 4-fold excess of histone H3-Lys4 methylation following induction of differentiation, indicating that CFP1 restricts the activity of the Set1 histone methyltransferase complex. These results reveal a mammalian counterpart to the yeast Set1/COMPASS complex. The presence of CFP1 in this complex implicates this protein as a critical epigenetic regulator of histone modification in addition to cytosine methylation and reveals one mechanism by which this protein intersects with the epigenetic machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.