Abstract
The centromere complex is a multicomponent structure essential for faithful chromosome transmission. Here we show that the S. cerevisiae centromere protein Cpf1 bends centromere DNA element I (CDEI) with the bend angle ranging from 66 degrees to 71 degrees. CDEI DNA sequences that carry point mutations which lead to reduced Cpf1 binding affinity and in vivo centromere activity are still able to show bending. The Cpf1 induced bend is directed towards the major groove with the bend centre located in CDEI. An intrinsic bend cannot replace the Cpf1 induced DNA bend for in vivo centromere function. An in vivo phasing experiment suggests that both the distance and the correct spatial arrangement of the CDEI/Cpf1 complex to CDEII and CDEIII are important for optimal centromere function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.