Abstract

BackgroundAlveologenesis is the final stage of lung development to form air-exchanging units between alveoli and blood vessels. Genetic susceptibility or hyperoxic stress to perturb this complicated process can cause abnormal enlargement of alveoli and lead to bronchopulmonary dysplasia (BPD)-associated emphysema. Platelet-derived growth factor receptor α (PDGFRα) signaling is crucial for alveolar myofibroblast (MYF) proliferation and its deficiency is associated with risk of BPD, but posttranscriptional mechanisms regulating PDGFRα synthesis during lung development remain largely unexplored. Cytoplasmic polyadenylation element-binding protein 2 (CPEB2) is a sequence-specific RNA-binding protein and translational regulator. Because CPEB2-knockout (KO) mice showed emphysematous phenotypes, we investigated how CPEB2-controlled translation affects pulmonary development and function.MethodsRespiratory and pulmonary functions were measured by whole-body and invasive plethysmography. Histological staining and immunohistochemistry were used to analyze morphology, proliferation, apoptosis and cell densities from postnatal to adult lungs. Western blotting, RNA-immunoprecipitation, reporter assay, primary MYF culture and ectopic expression rescue were performed to demonstrate the role of CPEB2 in PDGFRα mRNA translation and MYF proliferation.ResultsAdult CPEB2-KO mice showed emphysema-like dysfunction. The alveolar structure in CPEB2-deficient lungs appeared normal at birth but became simplified through the alveolar stage of lung development. In CPEB2-null mice, we found reduced proliferation of MYF progenitors during alveolarization, abnormal deposition of elastin and failure of alveolar septum formation, thereby leading to enlarged pulmonary alveoli. We identified that CPEB2 promoted PDGFRα mRNA translation in MYF progenitors and this positive regulation could be disrupted by H2O2, a hyperoxia-mimetic treatment. Moreover, decreased proliferating ability in KO MYFs due to insufficient PDGFRα expression was rescued by ectopic expression of CPEB2, suggesting an important role of CPEB2 in upregulating PDGFRα signaling for pulmonary alveologenesis.ConclusionsCPEB2-controlled translation, in part through promoting PDGFRα expression, is indispensable for lung development and function. Since defective pulmonary PDGFR signaling is a key feature of human BPD, CPEB2 may be a risk factor for BPD.

Highlights

  • Alveologenesis is the final stage of lung development to form air-exchanging units between alveoli and blood vessels

  • We previously found that loss of Cytoplasmic polyadenylation element-binding protein 2 (CPEB2) in the dorsal motor nucleus of the vagus neurons leads to translational upregulation of choline acetyltransferase, thereby increasing pulmonary acetylcholine level to induce bronchoconstriction-associated apnea in neonatal pups [23]

  • Along with our previous finding that bronchoconstriction-associated respiratory defect is caused by elevated choline acetyltransferase mRNA translation in dorsal motor nucleus of the vagus [23], the present study identified that CPEB2 in MYFs and MYF progenitors appears to activate Plateletderived growth factor receptor α (PDGFRα) mRNA translation

Read more

Summary

Introduction

Alveologenesis is the final stage of lung development to form air-exchanging units between alveoli and blood vessels. Plateletderived growth factor receptor α (PDGFRα) signaling is crucial for alveolar myofibroblast (MYF) proliferation and its deficiency is associated with risk of BPD, but posttranscriptional mechanisms regulating PDGFRα synthesis during lung development remain largely unexplored. Postnatal alveolar development is characterized by the expansion of epithelial cells lining primitive saccules and the formation of secondary septa by alveolar myofibroblasts (MYFs). Activation of PDGFRα in response to epithelial cell-secreted PDGF-A is crucial for the proliferation, differentiation and migration of MYFs [6]. The PDGF signaling family of proteins includes 4 ligands (PDGF-A, B, C and D) and 2 receptors (PDGFRα and β) [6, 7]. Ligand binding-mediated dimerization of PDGFRs triggers autophosphorylation of the tyrosine residues in their intracellular kinase domains [10, 11] and downstream signaling cascades, including the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway [12] and mitogen-activated protein kinase pathway [13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call