Abstract

The time-dependent CP asymmetry in exclusive B^0(t) -> K^{*0}\gamma decays has been proposed as a probe of new physics in B decays. Recently, this method was extended to radiative decays into multibody hadronic final states such as B^0(t)-> K_S\pi^0\gamma and B^0(t)-> \pi^+\pi^-\gamma. The CP asymmetry in these decays vanishes to the extent that the photon is completely polarized. In the Standard Model, the photon emitted in b-> s\gamma has high left-handed polarization, but right-handed contamination enters already at leading order in \Lambda/m_b even for vanishing light quark masses. We compute here the magnitude of this effect and the time dependent CP asymmetry parameter S_{K_S \pi^0\gamma}. We find that the Standard Model can easily accomodate values of S as large as 10%, but a precise value cannot be obtained at present because of strong interactions uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call