Abstract

Including the generalized CP symmetry, we have performed a comprehensive scan of leptonic mixing patterns which can be obtained from finite discrete groups with order less than 2000. Both the semidirect approach and its variant are considered. The lepton mixing matrices which can admit a good agreement with experimental data can be organized into eight different categories up to possible row and column permutations. These viable mixing patterns can be completely obtained from the discrete flavor groups $\Delta(6n^2)$, $D^{(1)}_{9n,3n}$, $A_5$ and $\Sigma(168)$ combined with CP symmetry. We perform a detailed analytical and numerical analysis for each possible mixing pattern. The resulting predictions for lepton mixing parameter, neutrinoless double decay and flavored leptogenesis are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.