Abstract

A new versatile method for the C–P bond formation of (hetero)aryl halides with trimethyl phosphite via a UV-induced photo-Arbuzov reaction, accessing diverse phosphonate-grafted arenes, heteroarenes and co-facially stacked cyclophanes under mild reaction conditions without the need for catalyst, additives, or base is developed. The UV-induced photo-Arbuzov protocol has a wide synthetic scope with large functional group compatibility exemplified by over 30 derivatives. Besides mono-phosphonates, di- and tri-phosphonates are accessible in good to excellent yields. Mild and transition metal-free reaction conditions consolidate this method's potential for synthesizing pharmaceutically relevant compounds and precursors of supramolecular nanostructured materials.

Highlights

  • A new versatile method for the C–P bond formation ofaryl halides with trimethyl phosphite via a UV-induced photo-Arbuzov reaction, accessing diverse phosphonate-grafted arenes, heteroarenes and co-facially stacked cyclophanes under mild reaction conditions without the need for catalyst, additives, or base is developed

  • Recent trends to realize C–P bond formation are focused on visible-light-driven reactions, where Toste and co-workers rst developed a dual catalytic strategy by combining gold and ruthenium photoredox catalysis for the oxidative P-arylation of H-phosphonates.[15]

  • Advancing the UV-induced photo-Arbuzov reaction for the preparation of aryl phosphonates, in this work, we report a new and more effective method for C–P bond formation under mild conditions without the need for catalysts, additives, or a base employing a wide array of functionalized aryl, heteroaryl and thiacyclophanyl halides

Read more

Summary

Introduction

C–P bond formation of cyclophanyl-, and aryl halides via a UV-induced photo Arbuzov reaction: a versatile portal to phosphonate-grafted scaffolds† A new versatile method for the C–P bond formation of (hetero)aryl halides with trimethyl phosphite via a UV-induced photo-Arbuzov reaction, accessing diverse phosphonate-grafted arenes, heteroarenes and co-facially stacked cyclophanes under mild reaction conditions without the need for catalyst, additives, or base is developed.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.