Abstract

In this paper, we present a signcryption scheme called CP_ABSC based on Ciphertext-Policy Attribute Based Encryption (CP_ABE)[7] to secure the multicast communications in smart grids that require access control, data encryption, and authentication to ensure message integrity and confidentiality. CP_ABSC provides algorithms for key management, signcryption, and designcryption. It can be used to signcrypt a message based on the access rights specified by the message itself. A user can designcrypt a ciphertext if and only if it possesses the attributes required by the access structure of the data. Thus CP_ABSC effectively defines a multicast group based on the access rights of the data specified by the data itself, which differs significantly from the traditional Internet based multicast where the destination group is predetermined and must be known by the data source. CP_ABSC provides collusion attack resistance, message authentication, forgery prevention, and confidentiality. It can be easily applied in smart grids to secure the instructions/commands broadcast from a utility company to multiple smart meters (push-based multicast) and the data retrieved from a smart meter to multiple destinations (pull-based multicast). Compared to CP_ABE, CP_ABSC combines encryption with signature at a lower computational cost for signcryption and a slightly higher cost in designcryption for signature verification. We also consider the adoption of attribute-based signature (ABS), and conclude that CP_ABSC has a much lower computational cost than ABS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call