Abstract
The so called wedge singularities, that consist of a plane curve singularity C and a line transverse to the plane of C, are the simplest space curve singularities which are not a complete intersection. We show that for every wedge singularity X there is an isolated complete intersection singularity Y related to X and we describe the discriminant of X in terms of Y. We also show that the monodromy group of X corresponds to the one of Y.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.