Abstract

Lameness is one of the costliest pathological problems affecting dairy animals. It is usually assessed by trained veterinary clinicians who observe features such as gait symmetry or gait parameters as step counts in real time. With the development of artificial intelligence, various modular systems have been proposed to minimize subjectivity in lameness assessment. However, the major limitation in their development is the unavailability of a public database, as most existing ones are either commercial or privately held. To tackle this limitation, we have introduced CowScreeningDB, a multi-sensor database which was built with data from 43 dairy cows. Cows were monitored using smart watches during their normal daily routine. The uniqueness of the database lies in its data collection environment, sampling methodology, detailed sensor information, and the applications used for data conversion and storage, which ensure transparency and replicability. This data transparency makes CowScreeningDB a valuable and objectively comparable resource for further development of techniques for lameness detection for dairy cows. In addition to publicly sharing the database, we present a machine learning technique which classifies cows as healthy or lame by using raw sensory data. To facilitate fair comparisons with state-of-the-art methods, we introduce a novel benchmark. Combining the database, the machine learning technique and the benchmark validate our major objective, which is to establish the relationship between sensor data and lameness. The developed technique reports an average accuracy of 77 % for the best case scenario and presents perspectives for further development. By introducing this framework which encompasses the database, the classification algorithm and the benchmark, we significantly reduce subjectively in lameness assessment. This contribution to lameness detection fosters innovation in the field and promotes transparent, reproducible research in the pursuit of more effective management of dairy cow lameness. ImplicationsLameness detection is one of the main tasks in dairy systems, given its importance in the production ambit. However, the data used during detection is generally either held privately or sold commercially. In this study, we create a multi-sensor database (CowScreeningDB), which can be used for lameness. Because we have made the database public11(CowScreeningDB can be downloaded from https://github.com/Shahid-Ismail/CowScreeningDB-A-public-database-for-lameness-detection or https://gpds.ulpgc.es/) and free of charge for research purposes, it should act as a benchmark allowing to objectively compare techniques put forth to deal with lameness. We also provide details of the sampling system used, comprised of hardware and a baseline classification algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call